§ 25.301 specified in paragraph (b)(1) of this section. - (e) During flight tests required by paragraph (a) of this section, the limit maneuvering load factors prescribed in $\S 25.333$ (b) and 25.337, and the maneuvering load factors associated with probable inadvertent excursions beyond the boundaries of the buffet onset envelopes determined under $\S 25.251$ (e), need not be exceeded. In addition, the entry speeds for flight test demonstrations at normal acceleration values less than 1 g must be limited to the extent necessary to accomplish a recovery without exceeding V_{DF}/M_{DF} . - (f) In the out-of-trim condition specified in paragraph (a) of this section, it must be possible from an overspeed condition at VDF/MDF to produce at least 1.5 g for recovery by applying not more than 125 pounds of longitudinal control force using either the primary longitudinal control alone or the primary longitudinal control and the longitudinal trim system. If the longitudinal trim is used to assist in producing the required load factor, it must be shown at V_{DF}/M_{DF} that the longitudinal trim can be actuated in the airplane nose-up direction with the primary surface loaded to correspond to the least of the following airplane nose-up control forces: - (1) The maximum control forces expected in service as specified in §§ 25.301 and 25.397. - (2) The control force required to produce 1.5 g. - (3) The control force corresponding to buffeting or other phenomena of such intensity that it is a strong deterrent to further application of primary longitudinal control force. [Amdt. 25-42, 43 FR 2322, Jan. 16, 1978] ### Subpart C—Structure GENERAL ## § 25.301 Loads. (a) Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and ultimate loads (limit loads multiplied by prescribed factors of safety). Unless otherwise provided, prescribed loads are limit loads. - (b) Unless otherwise provided, the specified air, ground, and water loads must be placed in equilibrium with inertia forces, considering each item of mass in the airplane. These loads must be distributed to conservatively approximate or closely represent actual conditions. Methods used to determine load intensities and distribution must be validated by flight load measurement unless the methods used for determining those loading conditions are shown to be reliable. - (c) If deflections under load would significantly change the distribution of external or internal loads, this redistribution must be taken into account. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–23, 35 FR 5672, Apr. 8, 1970] ### §25.303 Factor of safety. Unless otherwise specified, a factor of safety of 1.5 must be applied to the prescribed limit load which are considered external loads on the structure. When a loading condition is prescribed in terms of ultimate loads, a factor of safety need not be applied unless otherwise specified. [Amdt. 25-23, 35 FR 5672, Apr. 8, 1970] # §25.305 Strength and deformation. - (a) The structure must be able to support limit loads without detrimental permanent deformation. At any load up to limit loads, the deformation may not interfere with safe operation. - (b) The structure must be able to support ultimate loads without failure for at least 3 seconds. However, when proof of strength is shown by dynamic tests simulating actual load conditions, the 3-second limit does not apply. Static tests conducted to ultimate load must include the ultimate deflections and ultimate deformation induced by the loading. When analytical methods are used to show compliance with the ultimate load strength requirements, it must be shown that— - (1) The effects of deformation are not significant: - (2) The deformations involved are fully accounted for in the analysis; or - (3) The methods and assumptions used are sufficient to cover the effects of these deformations.